
The Current State of the Art of Schema Languages for XML

Rick Jelliffe
Topologi Pty. Ltd., Sydney, Australia, ricko@topologi.com

Abstract
A characterization and comments on schema languages

for XML at the end of 2001.

Keywords
SGML, XML, Schemas, DTDs, RELAX, Schematron, Hook,
Examplotron, document validation, PSVI

I. INTRODUCTION

The years 1999 to 2001 saw much activity in the area of
schema languages for XML[2]. I released Schematron, W3C
released XML Schemas, and Makoto Murata and James Clark
combined their RELAX and TREX validation languages into
RELAX Next Generation. Several other interesting
approaches became available.

This paper attempts to characterize the capabilities and
approaches of these schema languages. It uses a layered model
of the different constraints that apply to an XML document:

• the encoding rules;

• linking rules allow the physical composition of the docu-
ment from parts to be described and, potentially, con-
strained;

• the well-formedness and namespace rules which produce
an infoset (XML information set);

• constraints on structures which can be expressed by regu-
lar grammars;

• static datatyping, which are the constraints on values that
are independent of any other values;

• local reference integrity, which are the constraints about
references and uniqueness within a document, such as the
XML ID/IDREF rules;

• web reference integrity, which are the constraints on refer-
ences between resources over the WWW;

• co-occurrence constraints, which are constraints on struc-
tures or values based on data values (e.g., if the “pet”
attribute has value “dog” then the “legs” attribute must
have a value less than four) or based on the occurrence of
other element structures that cannot be expressed by basic
regular grammars (e.g., if there has already been a “sub-
ject” element in a previous element in the document, the
current element cannot contain it);

• value-defaulting is where the schema language provides
the values to be used when an attribute or element is not
explicitly specified.

This layered model is not the only one possible, but
reflects a common perception among users of documents.

One other very important consideration, in particular, is
how the schema language supports the construction and main-
tenance of complex, large-scale and long-term schemas. In the

DBMS world, these issues are dealt with at the tools level; but
open text-based schema languages require tool-independent
support: explicit mechanisms.

The following diagram shows the layers. In the subsequent
sections, this diagram will be used to show:

• the kind of constraints the schema language is focussed on;

• the leading strength; and

• the leading weakness.

The strength and weakness should not be taken as indica-
tions of the usefulness of the Schema language for any pur-
pose, since power is not the same thing as usability or
suitability.

Figure 1: A layered model of schema domains
This paper gives the schema languages known to the

author as living at the time of writing. The major omission is
consideration of ISO ASN.1. Readers may also care to con-
sider how systems such as the Unified Modeling Language’s
Object Constraint Language might fit in.

II. DTDs

XML[2] provides a stripped-version of SGML’s markup
declarations. XML DTDs provides a simple grammar mecha-
nism, with a low-level inclusion mechanism (parameter
entities and marked sections) to allow the structure rules to be
parameterized and customized, per document. Only validating
XML systems can make full use of this capability. SGML
DTDs allow more powerful grammars to be specified: some
set operations are allowed (include and exclude) and the posi-
tions in a content model in which text is valid can be speci-
fied.

Encoding

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

XML

Schemas

Unicode

Value-Defaulting

Physical Structure

Figure 2: Focus of DTDs
The datatyping of DTDs is very simple and limited to enu-

merations and simple kinds of tokens. The local reference
checking (ID/IDREF) is basic but useful.

III. W3C XML Schema

W3C XML Schema[1][16] use XML as its expression lan-
guage. It takes the namespace, not the document, as the funda-
mental unit of interest in validation. It is made of two
normative specifications, one for Datatypes and the other for
Structures and everything else. All typing uses type hierar-
chies, by which one can restrict and, in some cases, extend
other types.

The Datatypes specification has found a good level of
acceptance as a thorough and elegant approach to specifying
datatypes. For each of its primitive types, it defines a set of
facets, such the maximum value of a number; types are derived
from these primitive types by restricting facets.

The intent of W3C XML Schema is to reconstruct the
facilities provided by DTD’s parameter entities and marked
sections into a full type-lattice system with type inheritance,
type extension and type restriction. However, many of the
uses of parameter entities and marked sections could not be
reconciled with element or attribute “types” and so a basic
module system of import and include declarations is also pro-
vided.

Figure 3: Focus of XML Schemas
The Datatypes specification is uncontroversial enough

other schema languages can be expected to merely adopt it.
The Structures specification is rather more controversial,

and perhaps we should expect further development.

IV. ISO/JIS/OASIS RELAX

The RELAX NG[4] is a grammar-based schema language
developed specifically for data validation. It relaxes some of
the ambiguity constraints of DTDs and XML Schemas, and to
be powerful without providing any inheritance mechanism.

RELAX NG is being developed by a small working group
at the OASIS organization, building on earlier schema lan-
guages by Makoto Murata and James Clark. The intellectual
program of the former is concerned with discovering how to
allow documents of different types to be combined: if a frag-
ment of one document is pasted into another, their schemas
must also allow combination; this issue not only concerns
documents of different namespaces, but combining schemas
which are variants of each other, where one document con-
forms to an earlier version of a schema and another conforms
to a later version. The intellectual program of the latter is more
concerned with developing implementation primitives with
which schema languages as powerful as SGML DTDs can be
implemented simply.

Figure 4: Focus of RELAX NG
The RELAX NG specification is nearing completion at

time of writing. It has been mooted to become an ISO standard
itself (i.e., to be used as the basis of DSDL, see below) and at
least it may inform the development of future versions of
W3C XML Schemas.

V. Schematron

The Schematron Assertion Language[7][9] is a language
and toolkit for making assertions about patterns found in
XML documents. It can be used as a friendly validation lan-
guage and for automatically generating external annotation
(links, RDF, perhaps Topic Maps). Because it uses XPath[5]
paths and expressions rather than grammars, it can be used to
assert many constraints that cannot be expressed by DTDs or
XML Schemas.

I developed Schematron at the Academia Sinica Comput-
ing Centre, Taiwan, during 2001 as part of research on XML
schema languages[15] and on internationalization.[6]

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

broadness

complexity

Value-Defaulting

Encoding
Physical Structure

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

broadness

complexity

Value-Defaulting

Encoding

Physical Structure

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

expressiveness

limited focus

Value-Defaulting

Encoding
Physical Structure

Figure 5: Focus of Schematron
To characterize assertions informally, following are some

of the kinds of assertions that can be made. These can be
made, practically, by the grammar-based schema languages in
this paper:

A year contains twelve months, a month contains 28 to 31
days; a year has 355 or 354 days; every day has a name, and
all the names must cycle Monday, Tuesday, Wednesday, etc.
correctly across month boundaries; if December 25 is a Sun-
day then December 26 must have attribute holiday as true.

This kind of collection of assertions is a pattern, in Sche-
matron terminology: various rules collected together, describ-
ing some extended structure in the document. The language is
being exploring how to represent abstract non-regular patterns
in documents[11].

Schematron, like RELAX, was developed in part as a
response to the size and complexity of XML Schemas. The
Schematron reference implementation only takes about two
pages of XSLT code.

Because Schematron and rule-based schema languages
represent a new paradigm with many unexplored possibilities,
I am delaying presenting Schematron for standardization,
although it has been mooted for ISO standardization. I believe
it needs some abstraction mechanism for patterns in order to
make them first-class objects for expressing schemas; some
parameterization mechanism should be enough.

Another lack has been a standard data-typing library; I am
working on such a library, implementing equivalents of the
XML Schemas Datatypes built-in types.

VI. ISO Document Structure Definition
Language

DSDL[3] is a proposed schema language for XML and
SGML, being championed at ISO by the British national stan-
dards body. Its main goal seems to be to provide and upgrade
all the current capabilities of full SGML DTDs.

It would add some data-typing and occurrence features
from the other schema languages, but have much more
emphasis on modularity, physical storage issues, tag minimi-
zation, change tracking, and embedded non-XML sections as
part of the same data stream.

From the emphasis on parsing and physical construction
issues, it seems that DSDL will be most useful in the publish-
ing areas in which SGML has proved useful, but perhaps

which have been neglected during XML’s rise, rather than the
XML Schema’s areas of database-connectivity and XML’s
area of small messages.

Figure 6: Focus of DSDL

VII. Xlinkit

Xlinkit is a first-order logic-based rule language for speci-
fying link consistency, part of a rule-based hypertext genera-
tion and consistency-checking service.[12] Xlinkit was
developed at University College, London by Professor
Anthony Finkelstein, Christian Nentwich and others.

Figure 7: Focus of xlinkit
To understand xlinkit, let us consider a general use-case:

we very often transform XML documents from one structure
to another; sometimes the XML document goes through mul-
tiple transformations. There is a school of software engineer-
ing that says we need to be able to prove our systems; this may
take place by unit tests on parts of the system or be put in
place permanently for quality control. Xlinkit provides tools
for these kinds of checks: it allows links to be implied
between different documents. The links might also be between
documents in the same generation, rather than just pre- and
post-transformation documents: some information in one doc-
ument may presume the existence of some other information
in another document.

Xlinkit shares many features in common with the author’s
Schematron Assertion Language: the use of XPath expres-
sions, a rule-based system, the use schema languages for auto-
matic link generation, and the positioning of schema
languages in the Software Engineering discipline (rather than,
say, schema languages for application generation).

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

power,

interaction

simplicity

with storage
or access

Value-Defaulting

Encoding

Physical Structure

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

broadness

SGML

Value-Defaulting

Encoding
Physical Structure

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

power,

high-end

completeness

Value-Defaulting

Encoding

Physical Structure

However, the two were developed independently and as
part of different intellectual programs: xlinkit as a way to
check link consistency, Schematron as a way to describe
abstract patterns in documents. Xlinkit is perhaps best targeted
at larger sites which can use a consistency-checking service,
while Schematron is intended as more a tool for giving end-
users diagnostic information. Xlinkit pre-dates Schematron by
a small period and has some patent governing it. However,
implementations of both XLinkIt and Schematron source code
are available as Open Source.

VIII. Examplotron

Examplotron[17] uses exemplars to specify a schema: a
document with all the elements and attributes that will be
required, with some additional elements to specify optionality.
Examplotron was developed by Eric van der Vlist.

Schematron-like assertions are also available.

Figure 8: Focus of Examplotron

IX. Hook

Hook[8] is an experiment in minimalism. It is based on
partial ordering rather than grammars or paths. Hook was
developed by the author at Academia Sinica and Geotempo,
Inc.

Figure 9: Focus of Hook
The intent is a schema language which is more terse than

DTDs, but which allows several important constraints to be
validated by a receiving web client using a SAX filter. The
constraints validated are:

• element names,

• possible top-level elements,

• elements that cannot contain other elements,

• some kinds of containment or sequence relations.

A Hook schema is an ordered list of element names, with
various brackets and punctuation to indicate grouping and
containment properties. Below are examples of three Hook
schemas for a simple HTML.

Figure 10: A grammar tree for a simple HTML
The first example below merely lists all elements (here in

alphabetical order). This is adequate for check element name
spelling, but not much else. The square brackets indicate that
the elements in the group may contain each other.

Figure 11: A basic Hook schema for simple HTML
The second example below groups the elements by level:

the top-level element must be “html”. The second level ele-
ments must be “head” or body”, and so on. The full-stop on
title indicates that it cannot have children.

Figure 12: A possible Hook schema for the simple HTML by level
The third example below introduces provides quite a lot of

ordering and containment information. The semi-colon on the
meta element indicates that the element cannot contain ele-
ments from the same group.

Figure 13: A better Hook schema for the simple HTML
The reason for the name Hook is that it is the Hook path

for each element in a document that is checked for its order.
The Hook path is the path created by concatenating the previ-
ous-sibling elements of the current element with its ancestor
elements, using XPath[5] axis terminology.

The rationale for using Hook paths to unify axes is that in
SGML document, which allow omit-tag minimization, the
class of errors where one element is wrongly embedded in
another rather than following it, and vice versa, is important;
however, it is less important in XML due to the well-formed-
ness rules. It may not be an important error to test for.

X. Embedded Schematron

One distinguishing feature of Schematron is that it has
been designed to be embeddable in other schema languages.

Various levels of assertions are possible:

• simple assertions (e.g. single sch:assert elements)
which must be true at some context provided by the host

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

extreme

Value-Defaulting

Encoding

Physical Structure

simplicity

Well-formed Infoset

Regular Structures
Static Datatyping

Local Reference Integrity

Co-Occurrence Constraints
Web Reference Integrity

Strength:

Weakness:

terseness,

modest aims,

size

exotic

Value-Defaulting

Encoding

Physical Structure

html
head

title

meta *

script

body

*

p

table tr * td*
*

[body head html meta p script table td title tr]

html [head body] [title. meta script; p table] [tr] [td]

html head title. [meta; script;] body [p; table][tr][td;]

schema;

• rules, which are collections of assertions, which provide
their own contexts;

• full patterns, which collect rules together.

An open-source preprocessor exists[14] by which Sche-
matron rules may be extracted from a W3C XML Schema
appinfo element and assembled into an full Schematron
schema. Another open-source preprocessor exists[13] which
can decorate a document with the type names from an XML
Schema schema; the conjunction of these two pre-processors
allows a Schematron schema to act, in large part, using the
PSVI without requiring any special API.

Sun Microsystem’s Multi-Schema Validator has an add-on
component[10] to interpret Schematron rules attached to
RELAX elements.

Examplotron includes simple assertions.
The provision of simple assertions is so simple to imple-

ment, given the widespread availability of XSLT implementa-
tions, that it may well become a common feature of future
schema languages.

XI. Controversies

Here are some of the current technical issues.

A. Post-Schema Validation Infoset

W3C XML Schema introduces a concept of the Post-
Schema-Validation Infoset (PSVI). This is the information set
of an XML document after it has been validated by an XML
Schema processor. The information set is decorated with vari-
ous type information and validation outcomes, which are enu-
merated in the XML Schemas specifications.

This in turn leads us to a brave new world of PSVI-aware
tools and standards. For example, an updated version of XPath
which allows us to locate nodes according to their type. A pro-
ponent of PSVI processing might claim that it will allow more
efficient and generic software.

An opponent of PSVI processing might claim that not
much information is suited for type-based processing, that
controlled vocabularies of element names and content models
are entirely adequate, that PSVI processing adds a level of
complexity and abstraction that is not needed, that much effi-
ciency can be gained by casting the type of items in queries
rather than relying on a PSVI.

One of the strongest objections is that, for web use, it is
very desirable to have schema languages that can be down-
loaded at the same time as the document: this requires a fairly
terse schema language so that the download time of the
schema does not dominate the download time of the docu-
ment. Terseness is a feature of DTDs.

The XML Schema line to answer this is that an XML
Schema can be compiled into efficient code, rather than being
downloaded for each document being validated. This is cer-
tainly an issue where the developers of a data-interchange sys-
tem will have a different opinion from someone trying to open
a document over the WWW and edit it.

The PSVI is a very disruptive force. It entails having data
accessible in a form for which there is no straightforward
XML equivalent. It will require a new generation of all XML
standards or specifications. It is significantly increases the
complexity of XML systems, though certainly for some users
this may be functionality they require.

B. Relation to Query Languages

One of the considerations of XML Schemas was to allow
efficient querying. In particular, a content model can only be
extended by suffixing particles to its end. This means that if
the data is being accessed using some index into a structure,
queries that are defined on a base element structure will also
work against elements of a type derived from the base.

A proponent of this might say that this can allow XML
data access to be closer to that achieved by table-based imple-
mentations.

An opponent might say that querying is better left to rela-
tional database systems, and XML Schemas seems to hijack
XML away from being a simple format for transmitting topic-
oriented data, documents and reports over the WWW to being
a next-generation interface for semi-structured database man-
agement systems. In that case, the requirement to allow effi-
cient querying over large documents is entirely spurious, and
as a result XML Schema’s limited suffixing provides little
utility for XML documents over the WWW.

C. Scoping: Documents or something else?

SGML and XML have a strong concept of document, a
logical collection of information. The document can be com-
posed of different physical entities. Unique identifiers (IDs)
are scoped by documents.

However, document scoping introduces several problems.
If elements from one document in some namespace are cut
and pasted into another document which uses some other
namespace, we will not get element name clashes, but we may
have ID clashes. Consequently XML Schemas provides a way
to scope IDs to elements in different namespace. The key and
uniqueness mechanisms in XML Schemas adopt a limited ver-
sion of XPath to do this; there is not enough evidence yet to
know that the mechanism provided by XML Schemas is ade-
quate.

Neither DTDs nor XML Schemas provide any way to
define what the top-level element is. An XML Schemas
schema instead provides the constraints applicable to a single
namespace. A document is validated by finding the appropri-
ate schema for each namespace as it is encountered in the doc-
ument instance.

XII. References

Many of these papers will also have archive copies avail-
able through the Robin Cover’s Cover Pages archive, http://
xml.coverpages.org/

There is Open Source code available for all the Schema
languages considered in this paper, except Hook which is
experimental.
[1] Paul V. Biron, Ashok Malhotra, editors. XML Schema

Part 2: Datatypes. W3C (World Wide Web Consor-
tium), 2001. See http://www.w3.org/TR/xmlschema-
2/

[2] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve
Maler, editor, Extensible Markup Language (XML) 1.0
(Second Edition), W3C (World Wide Web Consor-
tium), 2001. See http://www.w3.org/TR/REC-xml

[3] Martin Bryant, Use Cases for DSDL, web page, The
SGML Centre, U.K., 2001. See http://xml.cover-
pages.org/BryanDSDL-UseCases20011006.html

[4] James Clark, MURATA Makoto, editors. RELAX NG
Specification, technical report, OASIS, 2001. See
http://www.oasis-open.org/committees/relax-

ng/spec.html

[5] James Clark, Steve DeRose, editors, XML Path Lan-
guage (XPath) Version 1.0, W3C (World Wide Web
Consortium), 2001. See http://www.w3.org/TR/

xpath

[6] Rick Jelliffe, Chinese XML Now!, website, Academia
Sinica Computing Centre, Taiwan, 1999. See http://
www.ascc.net/xml

[7] Rick Jelliffe, The Schematron Assertion Language 1.5,
technical report, Academia Sinica Computing Centre,
Taiwan, 2000. See http://www.ascc.net/xml/

resource/schematron/Schematron2000.html

[8] Rick Jelliffe, Resource Directory (RDDL) for Hook
0.2, A One-Element Language for Validation of XML
Documents based on Partial Order, web page, Aca-
demia Sinica Computing Centre, Taiwan, 2001. See
http://www.ascc.net/xml/hook/

[9] Rick Jelliffe, Resource Directory (RDDL) for Schema-
tron 1.5, web page, Academia Sinica Computing Cen-
tre, Taiwan, 2001. See http://www.ascc.net/

xml/schematron/

[10] K. Kawaguchi, Sun Multi-Schema XML Validator
Schematron add-on, software, Sun Microsystems,
2001. See http://www.sun.com/software/xml/
developers/schematronaddon/

[11] Toivo Lainevool, XML Patterns, website, http://
www.xmlpatterns.com/

[12] Christian Nentwich, Wolfgang Emmerich and Anthony
Finkelstein. xlinkit: links that make sense, technical
report, Department of Computer Science, University
College London, 2001. See http://

www.cs.ucl.ac.uk/staff/A.Finkelstein/papers/

htxlinkit.pdf

[13] Francis Norton, Type-Tagger, software, 2001. See
http://www.schemavalid.com/utils/

typeTagger.zip

[14] Francis Norton, Eddie Robertsson. xsd2sch.xsl, soft-
ware, 2001. Available as part distribution of Topologi
Schematron Validator, Topologi, 2001. See http://
www.topologi.com/

[15] Simon St. Laurent, Schematron: an Interview with Rick
Jelliffe, webpage, XML.com, 2000. See http://
www.xmlhack.com/read.php?item=121

[16] Henry S. Thompson, David Beech, Murray Maloney,
Noah Mendelsohn, editors. XML Schema Part 1:
Structures. W3C (World Wide Web Consortium),
2001. See http://www.w3.org/TR/xmlschema-1/

[17] Eric van der Vlist, Examplotron, web page, 2001. See
http://www.examplotron.org/

	The Current State of the Art of Schema Languages for XML
	Keywords
	I. INTRODUCTION
	II. DTDs
	III. W3C XML Schema
	IV. ISO/JIS/OASIS RELAX
	V. Schematron
	VI. ISO Document Structure Definition Language
	VII. Xlinkit
	VIII. Examplotron
	IX. Hook
	X. Embedded Schematron
	XI. Controversies
	A. Post-Schema Validation Infoset
	B. Relation to Query Languages
	C. Scoping: Documents or something else?

	XII. References

